// This is a list of the variables available in the EventData class and its subclasses.
is an instance of the EventData class.

// "even
// Event

t"

Data class, browse

Here,
To see the full class structure of the
the source files in the darkart/Products/ directory of the repository.

L1177 0077777007777 7777777707777 777 7077777777777 7777777777777 77777777777777777

// The event level identifier information,

such as event ID and event timing information, are //
// stored in event->event info. The event-level pulse information is stored in event->pulses //
//

// and is described at the end.

N s

int

int

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

uint32 t
uint64 t
uinted t
uint6d t
int
bool

event->event info

event->event info

event->event info.
event->event info.
event->event info.
event->event info. . -
.nchans //physical channels that 1it up
event->event info.

event->event info

.run_id
event->event info.
event->event info.
event->event info.

event id
gps_coarse
gps_fine

.pps
event->event info.
event->event info.

total inhibit time us //total trigger inhibit time (us)

incremental inhibit time 20ns //trigger inhibit time for the previous
//trigger (20 ns)

live time 20ns //live time for the current trigger (20 ns)

timestamp sec //unix timestamp for this event

dt usec //time since the last event in microseconds

event time usec //time since run start in microseconds

saturated //true if any channel hit the limit of its digitizer

s

// The physical channels are accessed by event->channels[i].
// 1 is NOT the channel ID!
// same class type as event->channels[i]

The index i runs over 0 to 37 but //
which is of the //
//

To access the SUM CHANNEL, use event->sumchannel,

L1177 77 0777777777777 777777777777 77 7777707777777 77777777777777777777777777777777777777717777777

int
double
int
int

bool

double
//the ot

double
double
int
int
double
double
int

double
double

event->channels[i]
event->channels[i]
event->channels[i]
event->channels[i]

event->channels[i]

event->channels[i]
her values for the

event->channels[i]
event->channels[i]
event->channels[i]
event->channels[i]
event->channels[i]
event->channels[i]
event->channels[i]

event->channels[i]
event->channels[i]

.raw_wfm.
.raw_wfm.
.raw_wfm.
.raw_wfm.
.raw_wfm.
.raw_wfm.
.raw_wfm.

.channel.channel id() //returns the unique global identifier for this channel

.channel.sample rate //samples per microsecond

.channel.trigger index

.channel.nsamps //number of samples in the waveform; should be the same for
//all channels

.channel.saturated //did the signal hit the max or min range of the digitizer?

.pmt.spe mean

pmt object are not currently being filled
minimum

maximum

min index

max_index

min time

max time

nsamps //number of samples in the waveform

.baseline subtracted wfm.minimum
.baseline subtracted wfm.maximum

//and so on; baseline subtracted wfm is the same class type as the raw wfm object

double
double

event->channels[i].
event->channels[1].

integral.minimum
integral .maximum

//and so on; integral is the same class type as the raw wfm object

bool
double
double
bool
int
int

int
double
double
int
int
double
double
double

event->channels[i]
event->channels[i]
event->channels[i]
event->channels[i]
event->channels[i]

event->channels[i].

event->channels[i]
event->channels[i]
event->channels[i]
event->channels[i]
event->channels[i]
event->channels[i]
event->channels[i]
event->channels[i]

.baseline.found baseline
.baseline.mean
.baseline.variance
.baseline.saturated
.baseline.length
baseline.search start index
.regions[j].region number
.regions[j].start time
.regions[j].end time
.regions[j].start index
.regions[j].end index
.regions[j] .max
.regions[j].max time
.regions([j].min



double event->channels[i].regions[j].min time
double event->channels[i].regions[j].integral

int event->channels[i].pulses[j].pulse.pulse_id() //unique identifier for this pulse within channel

bool event->channels[i].pulses[]j].pulse.start clean //start of pulse does not overlap with previous one

bool event->channels[i].pulses[j].pulse.end clean //end of pulse does not overlap with next pulse

int event->channels[i] .pulses[]j].pulse.start index

int event->channels[i].pulses[j].pulse.end index

double event->channels[i].pulses[]j].pulse.start time

double event->channels[i].pulses[j].pulse.end time

double event->channels[i].pulses[]j].pulse.dt //time between start of this pulse and the previous one

bool event->channels[i].pulses[j].param.found peak //did we find a peak?

int event->channels[i] .pulses[j].param.peak index

double event->channels[i].pulses[]j].param.peak time

double event->channels[i].pulses[]j].param.peak amplitude

double event->channels[i].pulses[]j].param.integral

bool event->channels[i] .pulses[]].param.peak saturated

std::vector<double> event->channels[i].pulses[]j].param.f param //f-parameters for different time
//values

double event->channels[i].pulses[]].param.f90 //f-parameter for 90 ns

double event->channels[i].pulses[]j].param.t05 //time to reach XX% of total integral

double event->channels[i].pulses[j].param.tl0

double event->channels[i].pulses[]j].param.t90

1. 1.
1. 1.
1. 1.
1. 1.
double event->channels[i].pulses[]j].param.t95
1. 1.
1. 1.
1. 1.

double event->channels[i].pulses[j].param.fixed intl //integral of first 7 us of the pulse

double event->channels[i].pulses[j].param.fixed int2 //integral of first 30 us of the pulse

bool event->channels[i].pulses[j].param.fixed intl valid //did the event extend past the
//integration window?

bool event->channels[i].pulses[]].param.fixed int2 valid

double event->channels[i].pulses[]j].param.npe //integral scaled for single pe amplitude

s

// The event-level pulse information is stored in PulseData objects that are the same as the //
// event->channels[i].pulses[i]. These event-level variables are, for the most part, built by //
// totalling the corresponding pulse parameters across the physical channels. //

L1107 07 0777777777777 777777777777 77 7777777770777 777777 77777777777777777777777777777777717777777

double event->pulses]|]j
double event->pulses]|]j
double event->pulses][]j

pulse.start time
pulse.end time
pulse.dt //time between start of this pulse and the previous one

int event->pulses[j].pulse.pulse id() //unique identifier for this pulse
bool event->pulses[j].pulse.start clean //start of pulse does not overlap with previous one
bool event->pulses[j].pulse.end clean //end of pulse does not overlap with next pulse
int event->pulses([]j].pulse.start index
int event->pulses[]j] .pulse.end index
1.
I.
1.

bool event->pulses[]j].param.found peak //did we find a peak?

int event->pulses[]j] .param.peak index

double event->pulses[j].param.peak time

double event->pulses[j].param.peak amplitude

double event->pulses[j].param.integral

bool event->pulses[]j].param.peak saturated

std::vector<double> event->pulses[]j].param.f param //f-parameters for different time values

double event->pulses[]j].param.f90 //f-parameter for 90 ns

double event->pulses[]j].param.t05 //time to reach XX% of total integral

double event->pulses[j].param.tl0

double event->pulses[j].param.t90

double event->pulses[]j].param.t95

double event->pulses[j].param.fixed intl //integral of first 7 us of the pulse; inverted and
//scaled to be in units of p.e.

double event->pulses[]j].param.fixed int2 //integral of first 30 us of the pulse; inverted and
//scaled to be in units of p.e.

bool event->pulses[j].param.fixed intl valid //did the event extend past the integration window?

bool event->pulses[j].param.fixed int2 valid

double event->pulses[]].param.npe //integral scaled for single pe amplitude



